On a projection least squares estimator for jump diffusion processes

نویسندگان

چکیده

This paper deals with a projection least squares estimator of the drift function jump diffusion process X computed from multiple independent copies observed on [0, T]. Risk bounds are established this and an associated adaptive estimator. Finally, some numerical experiments provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least – Squares Method For Estimating Diffusion Coefficient

 Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...

متن کامل

LEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT

Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.

متن کامل

On Berry-Esseen type bound for least squares estimator for diffusion processes based on discrete observations

The paper is concerned with the distribution of the least squares estimator (LSE) of the drift parameter in the stochastic differential equation (SDE) of small diffusion observed over discrete set of time points. Convergence of the distribution of the least squares estimator to the standard normal distribution with an error bound has been obtained when the discretization step decreases with noi...

متن کامل

Variable projection for nonlinear least squares problems

The variable projection algorithm of Golub and Pereyra (1973) has proven to be quite valuable in the solution of nonlinear least squares problems in which a substantial number of the parameters are linear. Its advantages are efficiency and, more importantly, a better likelihood of finding a global minimizer rather than a local one. The purpose of our work is to provide a more robust implementat...

متن کامل

A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions

We study the problem of parameter estimation for Ornstein–Uhlenbeck processes driven by symmetric α-stable motions, based on discrete observations. A least squares estimator is obtained by minimizing a contrast function based on the integral form of the process. Let h be the length of time interval between two consecutive observations. For both the case of fixed h and that of h → 0, consistenci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of the Institute of Statistical Mathematics

سال: 2023

ISSN: ['1572-9052', '0020-3157']

DOI: https://doi.org/10.1007/s10463-023-00881-7